Sequential Recommendation with Probabilistic Logical Reasoning

Huanhuan Yuan¹, Pengpeng Zhao^{1*}, Xuefeng Xian^{2*} and Guanfeng Liu³ and Victor S. Sheng⁴ and Lei Zhao¹

¹Soochow University

²Suzhou Vocational University

³ Macquarie University

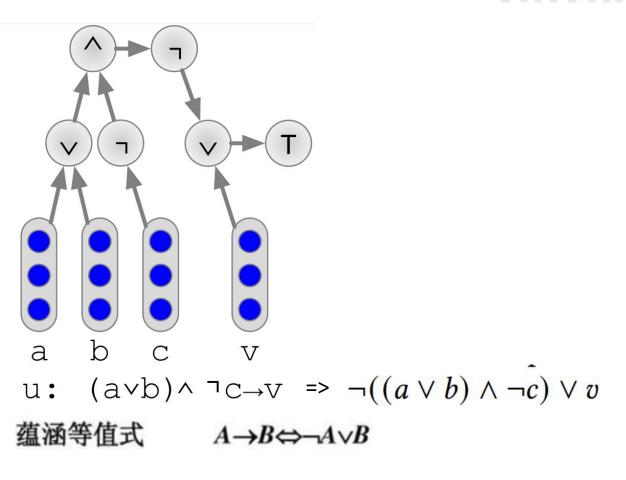
⁴ Texas Tech University

hhyuan@stu.suda.edu.cn, ppzhao@suda.edu.cn, xianxuefeng@jssvc.edu.cn, guanfeng.liu@mq.edu.au, Victor.Sheng@ttu.edu, zhaol@suda.edu.cn

code: https://github.com/Huanhuaneryuan/SR-PLR.

IJCAI 2023

Introduction



The most recent models for logical reasoning are embedding-based. The feature description and logical representation are coupled in the same framework, which makes it hard to distinguish which latent feature contributes to feature representation or logical reasoning.

Most of them assume user preferences are static and embed users and items in a deterministic manner, but ignore that the user's tastes are full of uncertainty and evolving by nature, which incurs inaccurate recommendations.

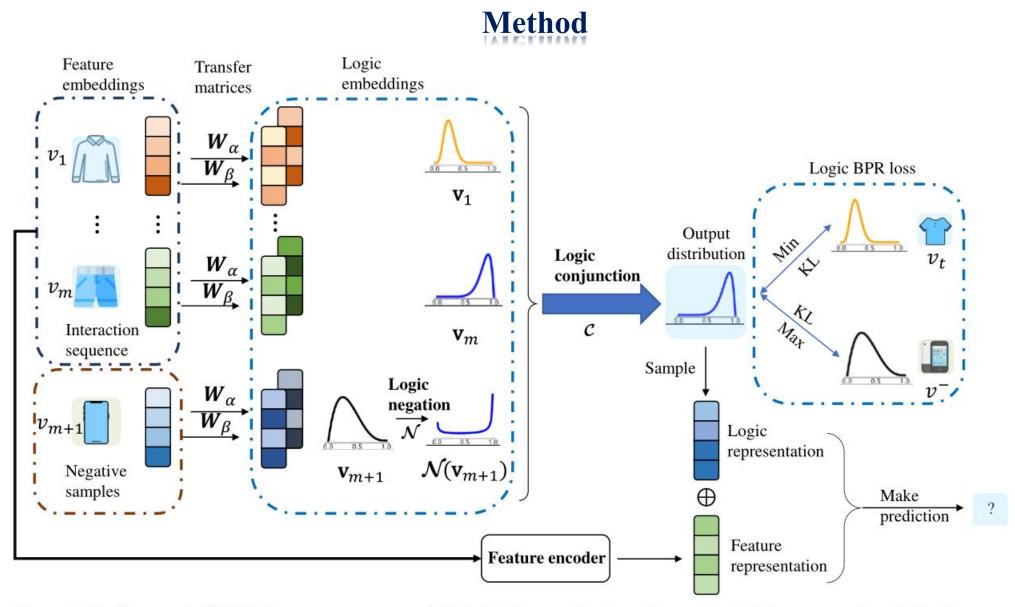
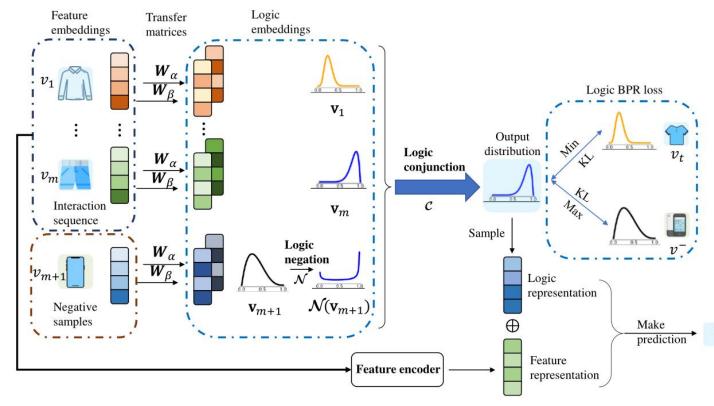


Figure 1: The framework of SR-PLR. v_1, v_2, \dots, v_m are u's historical items, v_t is a target item and \mathbf{v}_i is their corresponding distributions. v_{m+1} and v^- represent the sampled items that the user does not interact with.

Method



$$\overline{\mathbf{v}} = [(\sum_{i=1}^m \mathbf{w}_i \odot \boldsymbol{\alpha}_i, \sum_{i=1}^m \mathbf{w}_i \odot \boldsymbol{\beta}_i)]$$
 (3)

$$p_{\overline{\mathbf{v}}}(x) = \prod p_{\mathbf{v}_1}^{\mathbf{w}_1}(x) p_{\mathbf{v}_2}^{\mathbf{w}_2}(x) \cdots p_{\mathbf{v}_m}^{\mathbf{w}_m}(x)$$
 (4)

$$\mathbf{w}_{i} = \frac{\exp(MLP(\boldsymbol{\alpha}_{i} \oplus \boldsymbol{\beta}_{i}))}{\sum_{j} \exp(MLP(\boldsymbol{\alpha}_{j} \oplus \boldsymbol{\beta}_{j}))}$$
(5)

$$\overline{\mathbf{v}}_u = \mathcal{C}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m, \mathcal{N}(\mathbf{v}_{m+1}), \cdots, \mathcal{N}(\mathbf{v}_n)\})$$
 (6)

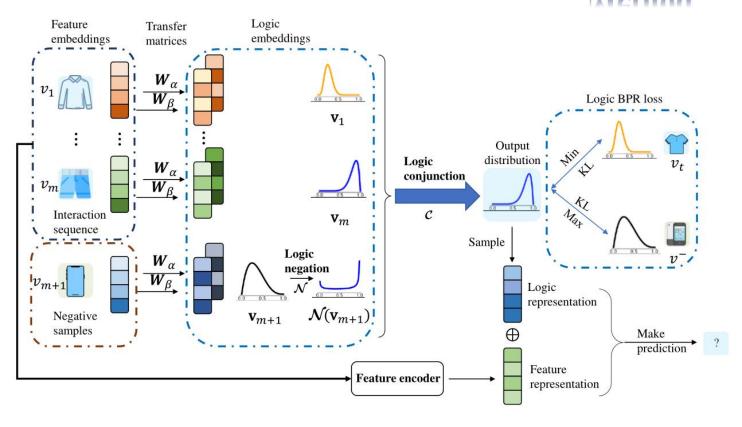
$$oldsymbol{lpha} = \mathbf{M} \mathbf{W}_{lpha}, oldsymbol{eta} = \mathbf{M} \mathbf{W}_{eta}$$

$$\mathcal{N}(\mathbf{v}_i) = [(\frac{1}{\alpha_{i,1}}, \frac{1}{\beta_{i,1}}), (\frac{1}{\alpha_{i,2}}, \frac{1}{\beta_{i,2}}), \cdots, (\frac{1}{\alpha_{i,d}}, \frac{1}{\beta_{i,d}})] \quad (2)$$

$$Dist(\overline{\mathbf{v}}_u, \mathbf{v}_t) = \sum_{k=1}^{a} KL(\mathbf{P}_k(\mathbf{v}_t), \mathbf{P}_k(\overline{\mathbf{v}}_u))$$
 (7)

$$\mathcal{L}_l = \log(\sigma(\operatorname{Dist}(\overline{\mathbf{v}}_u, \mathbf{v}_t) - \operatorname{Dist}(\overline{\mathbf{v}}_u, \mathbf{v}^-))$$
(8)

Method



$$\mathbf{H}_{l}^{u} = \frac{\boldsymbol{\alpha}_{u}}{\overline{\boldsymbol{\alpha}}_{u} + \overline{\boldsymbol{\beta}}_{u}}$$

$$\mathcal{L}_{Rec} = -\sum_{i=1}^{|\mathcal{V}|} y_{i} \log (\hat{y}_{i}) + (1 - y_{i}) \log (1 - \hat{y}_{i})$$

$$(11)$$

$$\hat{\mathbf{y}} = (\mathbf{H}_f^u \oplus \mathbf{H}_l^u)(\mathbf{M} \oplus \mathbf{E})^{\top} \qquad (10) \qquad \mathcal{L} = \mathcal{L}_{Rec} + \lambda \mathcal{L}_l \qquad (12)$$

Datasets	Users	Items	Ratings	Avg. Len.	Sparsity
Sports	35,598	18,357	296,337	8.3	99.95%
Toys	19,413	11,925	167,597	8.6	99.93%
Yelp	30,499	20,068	317,182	10.4	99.95%

Table 1: Statistics of datasets.

Models		Amazon Sports			Amazon Toys				Yelp				
		HIT@5	HIT@10	N@5	N@10	HIT@5	HIT@10	N@5	N@10	HIT@5	HIT@10	N@5	N@10
RNN	GRU4Rec	0.0186	0.0300	0.0121	0.0158	0.0352	0.0519	0.0240	0.0294	0.0217	0.0360	0.0144	0.0189
	GRU4Rec_L	0.0225	0.0353	0.0141	0.0182	0.0387	0.0557	0.0268	0.0323	0.0249	0.0433	0.0160	0.0220
	Impro.	20.97%	17.67%	16.53%	15.19%	9.94%	7.32%	11.67 %	9.86%	14.74%	23.06%	11.11%	16.40%
CNN	Caser	0.0141	0.0226	0.0087	0.0115	0.0183	0.0302	0.0113	0.0151	0.0231	0.0351	0.0164	0.0202
	Caser_L	0.0173	0.0283	0.0109	0.0144	0.0228	0.0390	0.0132	0.0185	0.0260	0.0372	0.0185	0.0221
	Impro.	22.70%	25.22%	25.29%	25.27%	24.59%	22.56%	16.81%	22.52 %	12.55%	5.98%	12.80%	9.41%
Attention	SASRec	0.0317	0.0484	0.0172	0.0226	0.0630	0.0909	0.0354	0.0444	0.0422	0.0595	0.0322	0.0377
	SASRec_L	0.0332	0.0515	0.0192	0.0252	0.0632	0.0919	0.0359	0.0452	0.0441	0.0627	0.0326	0.0386
	Impro.	4.73%	6.40%	11.63%	11.50%	0.32 %	1.10%	1.41%	1.80%	4.50%	5.38%	1.24%	2.39%
DuoRec	DuoRec	0.0328	0.0505	0.0192	0.0249	0.0648	0.0929	0.0388	0.0479	0.0434	0.0618	0.0319	0.0378
	DuoRec_L	0.0342	0.0522	0.0200	0.0257	0.0652	0.0946	0.0388	0.0484	0.0441	0.0624	0.0321	0.0380
	Impro.	4.27%	3.37%	4.17%	3.21%	0.62%	1.83%	0%	1.04%	1.61%	0.97%	0.63%	0.53%
Logic	LINN	0.0151	0.0256	0.0101	0.0132	0.0196	0.0320	0.0133	0.0172	0.0215	0.0355	0.0146	0.0192
	NCR-I	0.0162	0.0263	0.0110	0.0146	0.0201	0.0322	0.0135	0.0176	0.0204	0.0354	0.0146	0.0191

Table 2: Overall performance on all datasets. 'XX_L' means the SR-PLR method that uses 'XX' as the backbone and the numbers in bold indicate the better results that are generated by the same feature encoder. 'N' denotes 'NDCG' and 'Impro.' denotes performance improvement compared with backbones.

	r		0.1	0.2	0.3	0.4	0.5
Sports	H@5	SASRec_L					0.0197 0.0198
	H@10	SASRec_L			0.0402 0.0417		0.0327 0.0320
	N@5	SASRec_L		0.0158 0.0185		0.0122 0.0136	
	N@10	SASRec SASRec L			0.0187 0.0210		
Toys	H@5	SASRec SASRec L		0.0581 0.0600			
	H@10	SASRec_L		0.0872 0.0888		0.0700 0.0821	
	N@5	SASRec SASRec L		0.0327 0.0343		0.0265 0.0324	0.0228 0.0271
	N@10	SASRec SASRec L			0.0374 0.0433		

Table 3: Robustness analysis on Sports and Toys.

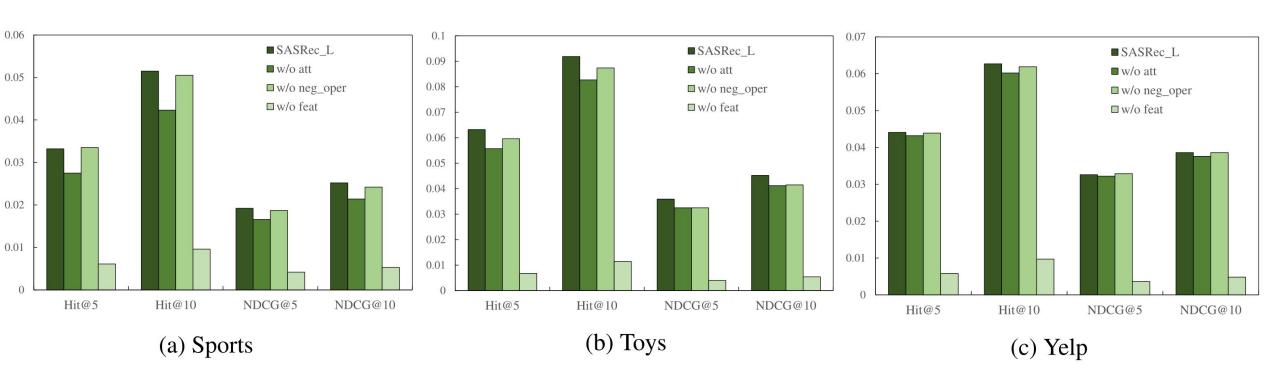


Figure 2: Ablation study of SR-PLR on three datasets.

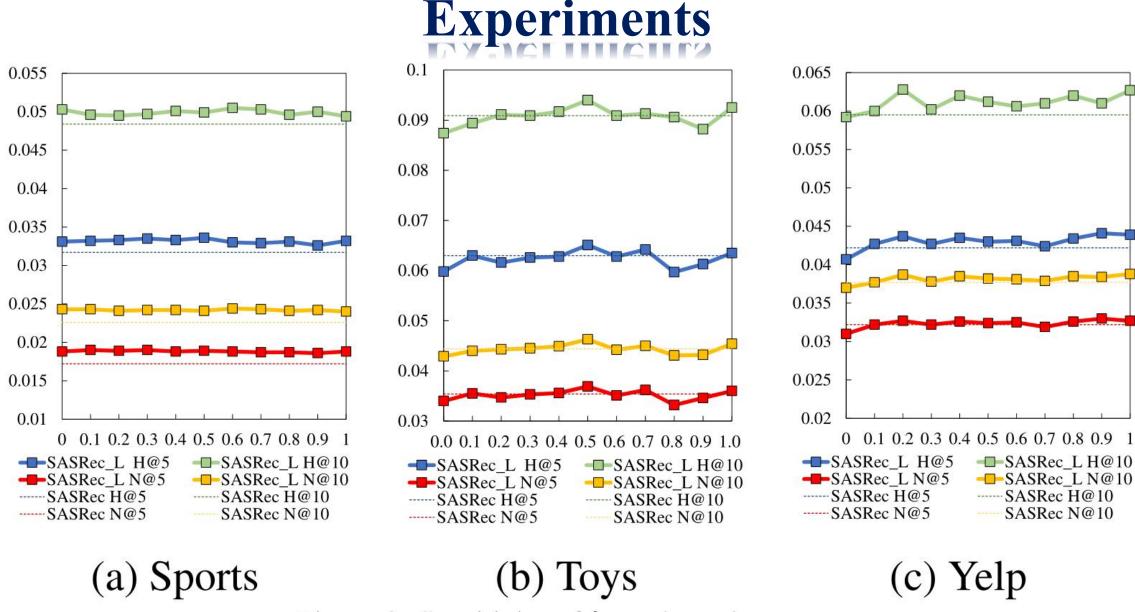


Figure 3: Sensitivity of λ on three datasets.

Experiments 0.1 0.055 0.065 0.05 0.09 0.06 0.045 0.08 0.055 0.04 0.07 0.05 0.035 0.03 0.06 0.045 0.025 0.05 0.04 0.02 0.035 0.04 0.015 0.03 0.01 0.03 3 10 3 10 -SASRec L H@5 -SASRec LH@10 -SASRec_L H@5 SASRec_L H@10 -SASRec_L H@5 SASRec_L H@10 SASRec L N@5 -SASRec_L N@10 SASRec_L N@5 -SASRec_L N@10 SASRec LN@5 -SASRec L N@10 ----SASRec H@5 -----SASRec H@10 ----SASRec H@10 ----SASRec H@5 ----SASRec H@10 ----SASRec H@5 -----SASRec N@5 SASRec N@10 ----SASRec N@5 SASRec N@10 ----SASRec N@5 SASRec N@10 (c) Yelp (a) Sports (b) Toys

Figure 4: Sensitivity of negative item number on three datasets.

Thanks